Лекция Векторное произведение векторов. Смешанное произведение векторов.

    Скачать с Depositfiles 

Лекция № 6. Тема 3 : Векторное произведение

3.1. Векторное произведение двух векторов и его основные свойства

Определение 1. Векторным произведением двух векторов  и  называется вектор , удовлетворяющий следующим условиям:

1. 

2. вектор  перпендикулярен векторам  и .

3. вектора      образуют правую тройку, т.е. из конца третьего вектора  кратчайший поворот от вектора  ко второму вектору  виден против часовой стрелки.

В противном случае тройка векторов называется левой.

 а) правая  б) левая

 

 

Обозначается векторное произведение:  или 

Из определения векторного произведения следуют его свойства и геометрический смысл:

Модуль векторного произведения численно равен площади параллелограмма, построенного на этих векторах.

Основные свойства векторного произведения:

1.   векторное произведение антикоммутативно.

2. , где , если  и  коллинеарные или по крайней мере один из сомножителей является нулевым вектором.

3. 

4. 

Замечание 1. Тройка базисных векторов  является правой.

3.2. Векторное произведение векторов, заданных своими координатами

Из определения векторного произведения следует, что:

 (1)

Тогда с учетом формул (1) и свойств векторного произведения получаем

 (2)

Пример 1. Заданы векторы  и  Найти площадь параллелограмма, построенного на этих векторах.

Исходя из геометрического смысла векторного произведения, получим

Тогда 

Замечание 2. Площадь треугольника, построенного на векторах  и  будет равна .

3.3.* Механический смысл векторного произведения

Если   радиус-вектор точки , к которой при-ложена сила , то момент этой силы относительно точки вычисляется по формуле

 (3)

При этом   моменты силы  относительно координатных осей. z

Рассмотрим задачу из механики: 3 M

В точке  приложена сила 

. Требуется найти моменты

этой силы относительно координатных осей. 2 y

По формуле (3) получаем х

Полезно отметить тот факт, что значения этих моментов совпадают со школьным определением – «Момент равен произведению силы на плечо». См. рисунок!

Тема 4 : Смешанное произведение

4.1. Смешанное произведение и его основные свойства

Определение 2. Векторно–скалярное произведение  называется смешанным и обозначается 

Рассмотрим его геометрический смысл.

Построим параллелепипед на векторах 

 Его объем равен  в 

его основании лежит параллелограмм с  h

площадью  

Его высота  поэтому имеем 

 (4)

Знак в выражении  совпадает со знаком  и поэтому смешанное произведение положительно, если вектора  образуют правую тройку.

Таким образом, приходим к следующему правилу:

Смешанное произведение некомпланарных векторов  по модулю равно объёму параллелепипеда, построенного на этих векторах. Оно поло-жительно, если тройка векторов правая и отрицательно, если левая.

Рассмотрим основные свойства смешанного произведения:

1. Если смешанное произведение равно нулю, то векторы компланарны.

Верно и обратное, т.е., если сомножители компланарны, то смешанное произведение равно нулю.

Равенство  возможно в следую-щих случаях:

а) хотя бы один из векторов  является нулевым, то векторы компланарны;

б)  и  коллинеарны   компланарны;

в)   компланарны.

Аналогично доказывается обратное утверждение.

2. , т.е. при циклической перестановке сомножителей смешанное произведение знак не меняется. Это следует из того, что в данном случае ориентация тройки этих векторов сохраняется. В остальных случаях перестановки сомножителей ориентация векторов меняется и тогда

3.  где А и В константы.

Это свойство следует из свойств векторного и скалярного произведений.

4.2. Смешанное произведение векторов, заданных своими координатами

Пусть заданы векторы . Требуется найти их смешанное произведение.

Из определения скалярного и векторного произведений следует

Таким образом, получаем формулу

 

 (5)

Пример 2: Проверить – лежат ли векторы  и  в одной плоскости, т.е. являются ли они компланарными.

По формуле смешанного произведения векторов имеем:

Поскольку то данные векторы  и  лежат в одной плоскости, т.е. являются компланарными.

Пример 3. Пирамида задана координатами своих вершин   Найти высоту, проведённую из вершины D на грань АВС. D

Построим векторы 

 Н С

Из геометрии известно, что объем пирамиды равен трети произведения А площади основания  на ее высоту Н, т.е. В

(6)

поскольку основанием пирамиды является треугольник (его площадь  равна половине площади параллелограмма ), а высота пирамиды равна высоте соответствующего параллелепипеда.

Используя геометрический смысл смешанного произведения и форму-лы (5) и (6), получим

Из формулы (2) и геометрического смысла векторного произведения следуют

Снова воспользуемся известной из геометрии формулой

и тогда окончательно получим

    Скачать с Depositfiles